Beta cell function and metabolic control during two years of follow-up after GAD65 dose-escalation immunomodulation in adult-onset autoimmune diabetes

Carl-David Agardh, ÅsaLinda Lethagen, Corrado M Cilio, Kristian Lynch, David RG Leslie, Mats Palmér, Robert A Harris, John A Robertson, Åke Lernmark. Lund University, Sweden

Conclusion

Our two-year follow-up of the 47 LADA patients who were given DiamydTM at escalating dosages demonstrates that the increase fasting and stimulated c-peptide and decrease in HbA1c previously reported for six months remained during the two year follow-up. As there were no treatment-related SAE we suggest that further exploration of the immunomodulating effects of 20 µg DiamydTM is warranted. Two more clinical trials are therefore now under way in Sweden using DiamydTM. The first of these is a double-blind trial in a greater number of patients in order to confirm efficacy in LADA patients, and the second is to investigate therapeutic efficacy in newly diagnosed type 1 diabetic patients. The outcome from these trials will be critical to future Phase III clinical trials for efficacy.

Background

- Autoimmune destruction of pancreatic β-cells is the major cause of Type 1 diabetes.
- Presence of GADA, IA2A, or IAA predict Type 1 diabe-
- These antibodies, especially GADA, may occur in up to 10% of LADA patients.
- Studies in the NOD mouse have shown that destruction of islet β-cells was associated with T cells recognizing GAD65.
- GAD65 effectively prevent autoimmune β-cell destruction and reduce and delay the development of spontaneous diabetes.

Purpose

The purpose of this study was to evaluate if alum-formulated recombinant GAD65 (DiamydTM) is safe and does not comprise beta cell function in GAD65-autoantibody positive type 2 diabetes patients.

Reference

Agardh C-D, Cilio CM, Lethagen ÅL, Lynch K, Leslie RDG, Palmér M, Harris RA, Robertson JA, Lernmark, Å (2005) Clinical evidence for the safety of GAD65 immunomodulation in adultonset autoimmune diabetes J Diabetes Complications 19:238-246

Methods

Trial design

A phase II randomized, double blind, placebo controlled trial in LADA patients

Following a screening phase, 47 LADA patients were randomized into four dose groups:

4, 20, 100, 500 μg Injected twice – subcutanuosly – four weeks apart

Inclusion Criteria

- Diabetic patients of both sexes aged 30-70 years
- Diagnosed with Type 2 diabetes within 5 years
- Presence of GADA
- Diabetes treatment with diet and/or oral agents
- Females of non child-bearing potential

Test substances

The unmodified recombinant form of human GAD65 (DiamydTM Bulk Drug) was formulated with Alhydrogel® (aluminium hydroxide). The bulk drug was manufactured using baculovirus/insect cell expression of the cDNA for rhGAD65. Both manufacture of the DiamydTM Bulk Drug and DiamydTM was performed under strict conditions of current Good Manufacturing Practice. Each vial contained a sterile formulation of either 4, 20, 100, or 500 μg of DiamydTM Bulk Drug in a constant amount of Alhydrogel[®]. Coded vials containing an identical amount of Alhydrogel[®] alone were used as placebo.

Markers of diabetes in placebo and treatment dose groups at baseline

Diabetes markers	Placebo	4ug	20ug	100ug	500ug
	(13)	(9)	(8)	(9)	(8)
Age (years)	56 (37-66)	58 (39-66)	57 (48-67)	57 (30-69)	53 (39-62)
Males (n)	12	7	6	6	8
BMI (kg/m^2)	26 (23-32)	27 (20-35)	28 (23-33)	27 (20-39)	26 (21-33)
HbA1c (%)	5.9 (0.7)	6.9 (1.6)	6.5 (1.6)	6.0(0.8)	6.3(0.9)
High risk HLA DQB1*0302	5 (38)	3 (33)	4 (50)	5 (56)	4 (50)
Auto-antibodies					
GAD65	13 (100	9 (100)	8 (100)	9 (100)	8 (100)
IA-2	1 (8)	1 (11)	2 (25)	1 (11)	1 (13)
IAA	1 (8)	0 (0)	0 (0)	1 (11)	0 (0)
ICA	10 (77)	8 (89)	7 (88)	6 (67)	3 (38)
S-Albumin (g/L)	39(36-47)	38(34-41)	38(35-43)	40 (36 – 46)	43 (36 – 46)
S-C-reactive Protein (mg/L)	9(5-12)	9(9-10)	9 (9-9)	9 (5- 15)	5(5-9)
S-LDL (mmol/L)	3.5(2.5-4.5)	2.8(2.4-4.4)	2.7(2.3-4.4)	3.1(2.5-3.7)	3.5(2.7-4.3)
S-HDL (mmol/L)	1.3(0.7-1.5)	1.1(0.7-1.6)	1.0(0.9-1.6)	1.3(0.9-1.9)	1.2(0.7-2.0)
S-Triglycerides (mmol/L)	1.1(0.4-10.0)	0.8(0.4-2.6)	1.3(0.5-2.5)	1.1(0.7-2.5)	1.1(0.6-3.5)

Variables summarized as median(range) or count (percentage)

Results

insulin within 24 months and in patients who did not

Group	Started insulin (months)	n	GADA (U/ml)	<i>f-C-peptide</i> (nmol/l)
Placebo	5-14	3	4221 (52-595917)	0.66 (0.30-0.77)
	no	9	96 (26 – 816)	0.68(0.50-1.70)
4 μg	7-12	4	879 (50-12419)	0.39 (0.31 – 0.43)
• 0	no	4	501 (60 – 1696)	0.89 (0.55 - 1.55)**
20 μg	8	1	1416	0.51
	no	7	55 (32 – 120)	0.74 (0.48 - 1.37)
100 μg	3	1	273	0.33
	no	7	33 (29 – 2335)	0.72 (0.58 - 1.50)
500 μg	4-14	4	226 (102-1851)	0.39 (0.27 - 0.70)
	no	4	36(28-117)*	1.00(0.54-1.80)*

Change in mean GADA

Change in log-GADA levels between dose groups was minor and did not differ between groups.

Change in mean HbA1c

centage (p=0.03)

Change in mean fasting c-peptid

Change in mean stimulated c-peptide

Change in mean fasting c-peptide / glucose

In the 20 ug dose group, fasting c-peptide increased by

The 20-ug-dose group showed an increase compared $+0.14 (0.06 - 0.21) \log \text{nmol/L}$, p<0.005), stimulated to the placebo group in fasting c-peptide (p=0.05), stic-peptide by $+0.19 (0.06 - 0.31) \log \text{nmol/L}$ (p=0.01), mulated c-peptide (p=0.03) and fasting c-peptide/gluas well as fasting c-peptide/glucose by +0.20 (0.06 cose (p<0.005). -0.33) log nmol/L/mmol/L (p=0.01) compared to baseline.

Over time, HbA1c in the 20 ug dose group declined gradually compared to the placebo group and differing significantly after two years (p=0.03).

Change in fasting c-peptide

